The NIO Package

We are now going to complete our introduction to core Java I/O facilities by returning to the java.nio package. The name NIO stands for “New I/O” and, as we saw earlier in this chapter in our discussion of java.nio. file, one aspect of NIO is simply to update and enhance features of the legacy java.io package. Much of the general NIO functionality does indeed overlap with existing APIs. However, NIO was first introduced to address specific issues of scalability for large systems, especially in networked applications. The following section outlines the basic elements of NIO, which center on working with buffers and channels.

Asynchronous I/O
Most of the need for the NIO package was driven by the desire to add non blocking and selectable I/O to Java. Prior to NIO, most read and write operations in Java were bound to threads and were forced to block for unpredictable amounts of time. Although certain APIs such as Sockets (which we’ll see in Chapter 13) provided specific means to limit how long an I/O call could take, this was a workaround to compensate for the lack of a more general mechanism. In many languages, even those without threading, I/O could still be done efficiently by setting I/O streams to a non blocking mode and testing them for their readiness to send or receive data. In a non blocking mode, a read or write does only as much work as can be done immediately—filling or emptying a buffer and then returning. Combined with the ability to test for readiness, this allows a single-threaded application to continuously service many channels efficiently. The main thread “selects” a stream that is ready and works with it until it blocks and then moves on to another. On a single-processor system, this is fundamentally equivalent to using multiple threads. It turns out that this style of processing has scalability advantages even when using a pool of threads (rather than just one). We’ll discuss this in detail in Chapter 13when we discuss networking and building servers that can handle many clients simultaneously.

In addition to non blocking and selectable I/O, the NIO package enables closing and interrupting I/O operations asynchronously. As discussed in Chapter 9, prior to NIO there was no reliable way to stop or wake up a thread blocked in an I/O operation. With NIO, threads blocked in I/O operations always wake up when interrupted or when the channel is closed by anyone. Additionally, if you interrupt a thread while it is blocked in an NIO operation, its channel is automatically closed. (Closing the channel because the thread is interrupted might seem too strong, but usually it’s the right thing to do.)

Performance
Channel I/O is designed around the concept of buffers, which are a sophisticated form of array, tailored to working with communications. The NIO package supports the concept of direct buffers—buffers that maintain their memory outside the Java VM in the host operating system. Because all real I/O operations ultimately have to work with the host OS by maintaining the buffer space there, some operations can be made much more efficient. Data moving between two external endpoints can be transferred without first copying it into Java and back out.

Mapped and Locked Files
NIO provides two general-purpose file-related features not found in java.io: memory-mapped files and file locking. We’ll discuss memory-mapped files later, but suffice it to say that they allow you to work with file data as if it were all magically resident in memory. File locking supports the concept of shared and exclusive locks on regions of files—useful for concurrent access by multiple applications.

Channels
While java.io deals with streams, java.nio works with channels. A channel is an endpoint for communication. Although in practice channels are similar to streams, the underlying notion of a channel is more abstract and primitive. Whereas streams in java.io are defined in terms of input or output with methods to read and write bytes, the basic channel interface says nothing about how communications happen. It simply has the notion of being open or closed, supported via the methods is Open() and close(). Implementations of channels for files, network sockets, or arbitrary devices then add their own methods for operations, such as reading, writing, or transferring data. The following channels are provided by NIO:

File Channel

Pipe. Sink Channel, Pipe. Source Channel

Socket Channel, Server Socket Channel, Datagram Channel

We’ll cover File Channel in this chapter. The Pipe channels are simply the channel equivalents of the java.io Pipe facilities. We’ll talk about Socket and Datagram channels in Chapter 13. Additionally, in Java 7 there are now asynchronous versions of both the file and socket channels: Asynchronous File Channel, Asynchronous Socket Channel, Asynchronous Server Socket Channel, and Asynchronous Datagram Channel. These asynchronous versions essentially buffer all of their operations through a thread pool and report results back through an asynchronous API. We’ll talk about the asynchronous file channel later in this chapter.

All these basic channels implement the Byte Channel interface, designed for channels that have read and write methods like I/O streams. Byte Channels read and write Byte Buffers, however, as opposed to plain byte arrays.

In addition to these channel implementations, you can bridge channels with java.io I/O streams and readers and writers for interoperability. However, if you mix these features, you may not get the full benefits and performance offered by the NIO package.

Buffers
Most of the utilities of the java.io and java.net packages operate on byte arrays. The corresponding tools of the NIO package are built around Byte Buffers (with character-based buffer Char Buffer for text). Byte arrays are simple, so why are buffers necessary? They serve several purposes:

They formalize the usage patterns for buffered data, provide for things like read-only buffers, and keep track of read/write positions and limits within a large buffer space. They also provide a mark/reset facility like that of java.io. Buffered Input Stream.

They provide additional APIs for working with raw data representing primitive types. You can create buffers that “view” your byte data as a series of larger primitives, such as shorts, ints, or floats. The most general type of data buffer, Byte Buffer, includes methods that let you read and write all primitive types just like Data Output Stream does for streams.

They abstract the underlying storage of the data, allowing for special optimizations by Java. Specifically, buffers may be allocated as direct buffers that use native buffers of the host operating system instead of arrays in Java’s memory. The NIO Channel facilities that work with buffers can recognize direct buffers automatically and try to optimize I/O to use them. For example, a read from a file channel into a Java byte array normally requires Java to copy the data for the read from the host operating system into Java’s memory. With a direct buffer, the data can remain in the host operating system, outside Java’s normal memory space until and unless it is needed.

Buffer operations
A buffer is a subclass of a java. nio. Buffer object. The base Buffer class is something like an array with state. It does not specify what type of elements it holds (that is for subtypes to decide), but it does define functionality that is common to all data buffers. A Buffer has a fixed size called its capacity. Although all the standard Buffers provide “random access” to their contents, a Buffer generally expects to be read and written sequentially, so Buffers maintain the notion of a position where the next element is read or written. In addition to position, a Buffer can maintain two other pieces of state information: a limit, which is a position that is a “soft” limit to the extent of a read or write, and a mark, which can be used to remember an earlier position for future recall.

Implementations of Buffer add specific, typed get and put methods that read and write the buffer contents. For example, Byte Buffer is a buffer of bytes and it has get() and put() methods that read and write bytes and arrays of bytes (along with many other useful methods we’ll discuss later). Getting from and putting to the Buffer changes the position marker, so the Buffer keeps track of its contents somewhat like a stream. Attempting to read or write past the limit marker generates a Buffer Under flow Exception or Buffer Overflow Exception, respectively.

The mark, position, limit, and capacity values always obey the following formula:

 mark <= position <= limit <= capacity
The position for reading and writing the Buffer is always between the mark, which serves as a lower bound, and the limit, which serves as an upper bound. The capacity represents the physical extent of the buffer space.

You can set the position and limit markers explicitly with the position() and limit() methods. Several convenience methods are provided for common usage patterns. The reset() method sets the position back to the mark. If no mark has been set, an Invalid Mark Exception is thrown. The clear() method resets the position to 0 and makes the limit the capacity, readying the buffer for new data (the mark is discarded). Note that the clear () method does not actually do anything to the data in the buffer; it simply changes the position markers.

The flip () method is used for the common pattern of writing data into the buffer and then reading it back out. flip makes the current position the limit and then resets the current position to 0 (any mark is thrown away), which saves having to keep track of how much data was read. Another method, rewind (), simply resets the position to 0, leaving the limit alone. You might use it to write the same size data again. Here is a snippet of code that uses these methods to read data from a channel and write it to two channels:

 Byte Buffer buff = ...
 while (in Channel .read(buff) > 0) { // position = ?
 buff .flip(); // limit = position; position = 0;
 out Channel .write(buff);
 buff .rewind(); // position = 0
 out Channel2.write(buff);
 buff .clear(); // position = 0; limit = capacity
 }
This might be confusing the first time you look at it because here, the read from the Channel is actually a write to the Buffer and vice versa. Because this example writes all the available data up to the limit, either flip () or rewind () have the same effect in this case.
