


5) c# language fundamentals.

2.4 Loops.

There may be a situation, when you need to execute a block of code several number of times. In general, the statements are executed sequentially: The first statement in a function is executed first, follo

wed by the second, and so on.
Programming languages provide various control structures that allow for more complicated execution paths.
A loop statement allows us to execute a statement or a group of statements multiple times and following is the general from of a loop statement in most of the programming languages:
[image: Loop Architecture]
C# provides following types of loop to handle looping requirements. Click the following links to check their detail.
	Loop Type
	Description

	while loop
	It repeats a statement or a group of statements while a given condition is true. It tests the condition before executing the loop body.

	for loop
	It executes a sequence of statements multiple times and abbreviates the code that manages the loop variable.

	do...while loop
	It is similar to a while statement, except that it tests the condition at the end of the loop body

	nested loops
	You can use one or more loop inside any another while, for or do..while loop.


Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic objects that were created in that scope are destroyed.
C# provides the following control statements. Click the following links to check their details.
	Control Statement
	Description

	break statement
	Terminates the loop or switch statement and transfers execution to the statement immediately following the loop or switch.

	continue statement
	Causes the loop to skip the remainder of its body and immediately retest its condition prior to reiterating.


Infinite Loop
A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally used for this purpose. Since none of the three expressions that form the for loop are required, you can make an endless loop by leaving the conditional expression empty.
Example
using System;
namespace Loops
{
   class Program
   {
      static void Main(string[] args)
      {
         for (; ; )
         {
            Console.WriteLine("Hey! I am Trapped");
         }
      }
   }
}

When the conditional expression is absent, it is assumed to be true. You may have an initialization and increment expression, but programmers more commonly use the for(;;) construct to signify an infinite loop.
2.5 Methods
A method is a group of statements that together perform a task. Every C# program has at least one class with a method named Main.
To use a method, you need to:
· Define the method
· Call the method
Defining Methods in C#
When you define a method, you basically declare the elements of its structure. The syntax for defining a method in C# is as follows:
<Access Specifier> <Return Type> <Method Name>(Parameter List)
{
   Method Body
}
Following are the various elements of a method:
· Access Specifier: This determines the visibility of a variable or a method from another class.
· Return type: A method may return a value. The return type is the data type of the value the method returns. If the method is not returning any values, then the return type is void.
· Method name: Method name is a unique identifier and it is case sensitive. It cannot be same as any other identifier declared in the class.
· Parameter list: Enclosed between parentheses, the parameters are used to pass and receive data from a method. The parameter list refers to the type, order, and number of the parameters of a method. Parameters are optional; that is, a method may contain no parameters.
· Method body: This contains the set of instructions needed to complete the required activity.
Example
Following code snippet shows a function FindMax that takes two integer values and returns the larger of the two. It has public access specifier, so it can be accessed from outside the class using an instance of the class.
class Number Manipulator
{
   public int Find Max(int num1, int num2)
   {
      /* local variable declaration */
      int result;

      if (num1 > num2)
         result = num1;
      else
         result = num2;

      return result;
   }
   ...
}

Calling Methods in C #
You can call a method using the name of the method. The following example illustrates this:
using System;
namespace Calculator Application
{
   class Number Manipulator
   {
      public int Find Max(int num1, int num2)
      {
         /* local variable declaration */
         int result;
         
         if (num1 > num2)
            result = num1;
         else
            result = num2;
         return result;
      }
      static void Main(string[] args)
      {
         /* local variable definition */
         int a = 100;
         int b = 200;
         int ret;
         Number Manipulator n = new Number Manipulator();

         //calling the Find Max method
         ret = n.Find Max(a, b);
         Console.WriteLine("Max value is : {0}", ret );
         Console.ReadLine();
      }
   }
}
When the above code is compiled and executed, it produces the following result:
Max value is : 200
You can also call public method from other classes by using the instance of the class. For example, the method FindMax belongs to the NumberManipulatorclass, you can call it from another class Test.
using System;
namespace Calculator Application
{
   class Number Manipulator
   {
      public int Find Max(int num1, int num2)
      {
         /* local variable declaration */
         int result;
         
         if(num1 > num2)
            result = num1;
         else
            result = num2;
         
         return result;
      }
   }
   
   class Test
   {
      static void Main(string[] args)
      {
         /* local variable definition */
         int a = 100;
         int b = 200;
         int ret;
         Number Manipulator n = new Number Manipulator();
         
         //calling the Find Max method
         ret = n.FindMax(a, b);
         Console.WriteLine("Max value is : {0}", ret );
         Console.ReadLine();
      }
   }
}
When the above code is compiled and executed, it produces the following result:
Max value is : 200
Recursive Method Call
A method can call itself. This is known as recursion. Following is an example that calculates factorial for a given number using a recursive function:
using System;
namespace Calculator Application
{
   class Number Manipulator
   {
      public int factorial(int num)
      {
         /* local variable declaration */
         int result;
         if (num == 1)
         {
            return 1;
         }
         else
         {
            result = factorial(num - 1) * num;
            return result;
         }
      }
      
      static void Main(string[] args)
      {
         Number Manipulator n = new Number Manipulator();
         //calling the factorial method
         Console.WriteLine("Factorial of 6 is : {0}", n.factorial(6));
         Console.WriteLine("Factorial of 7 is : {0}", n.factorial(7));
         Console.WriteLine("Factorial of 8 is : {0}", n.factorial(8));
         Console.ReadLine();
      }
   }
}
When the above code is compiled and executed, it produces the following result:
Factorial of 6 is: 720
Factorial of 7 is: 5040
Factorial of 8 is: 40320
Passing Parameters to a Method
When method with parameters is called, you need to pass the parameters to the method. There are three ways that parameters can be passed to a method:
	Mechanism
	Description

	Value parameters
	This method copies the actual value of an argument into the formal parameter of the function. In this case, changes made to the parameter inside the function have no effect on the argument.

	Reference parameters
	This method copies the reference to the memory location of an argument into the formal parameter. This means that changes made to the parameter affect the argument.

	Output parameters
	This method helps in returning more than one value.




image1.jpeg
nal Code

A

If condition
is true

If condition
is false





